
370 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

81.6 GOPS Object Recognition Processor Based on
a Memory-Centric NoC

Donghyun Kim, Student Member, IEEE, Kwanho Kim, Student Member, IEEE,
Joo-Young Kim, Student Member, IEEE, Seungjin Lee, Student Member, IEEE, Se-Joong Lee, Member, IEEE, and

Hoi-Jun Yoo, Fellow, IEEE

Abstract—For mobile intelligent robot applications, an 81.6
GOPS object recognition processor is implemented. Based on
an analysis of the target application, the chip architecture and
hardware features are decided. The proposed processor aims to
support both task-level and data-level parallelism. Ten processing
elements are integrated for the task-level parallelism and single
instruction multiple data (SIMD) instruction is added to exploit
the data-level parallelism. The Memory-Centric network-on-chip7
(NoC) is proposed to support efficient pipelined task execution
using the ten processing elements. It also provides coherence and
consistency schemes tailored for 1-to-N and M-to-1 data transac-
tions in a task-level pipeline. For further performance gain, the
visual image processing memory is also implemented. The chip
is fabricated in a 0.18- m CMOS technology and computes the
key-point localization stage of the SIFT object recognition twice
faster than the 2.3 GHz Core 2 Duo processor.

Index Terms—Multiprocessing, network-on-chip (NoC), object
recognition, VLSI.

I. INTRODUCTION

O BJECT recognition plays an essential role in a wide range
of applications including autonomous vehicles, robotic

sentries and mobile intelligent robots. In vehicular applications,
traffic lane markings and nearby cars are recognized to improve
the driver’s safety support [1]–[3] or to assist in navigation of
autonomous vehicles [4]. In the case of robotic sentries, real
time pattern recognition is used to distinguish human enemies
from the background scenery [5]. Recently, object recognition
has been the heart of vision-based localization and mapping
technology in mobile intelligent robots [6]–[8].

Object recognition involves image processing stages in-
cluding numerous iterations of complex calculations over
the entire pixels of the input image and results in vast com-
puting power requirements. In contrast to the vehicular and
robotic sentry applications, object recognition in mobile in-
telligent robots is especially challenging because the robots
are equipped with a limited power supply due to their small
physical dimensions. Previous implementations of intelligent
robots [6]–[10] realized their intelligence processing using

Manuscript received March 28, 2007; revised December 03, 2007. First pub-
lished February 03, 2009; current version published February 19, 2009.

The authors are with the School of Electrical Engineering and Computer Sci-
ence, Korea Advance Institute of Science and Technology (KAIST), Daejeon
305-701, Korea (e-mail: donghyun53@eeinfo.kaist.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2008.2011226

power-hungry general purpose processors. For example, Pio-
neer 3DX [9], which uses a state-of-the-art laptop at the time of
publication, consumes more power in its embedded computer
than its mechanical movement. Due to the significant power
consumption of the computing system [6], [8], [9], the operable
time of the robots is limited to tens of minutes. Even worse,
the performance achieved by the general purpose processor is
insufficient, and it is a limiting factor in improving robot motion
speed. Such high-performance requirements with low-power
constraints led us to design a single chip, application-specific
processor with power efficient features.

The most widely used object recognition algorithm in mobile
intelligent robots is scale invariant feature transform (SIFT) [6],
[7], [15], [17], [18]. As the first step to design an object recog-
nition processor, we analyzed the SIFT [15] computation to de-
termine the optimal hardware architecture, and we concluded
that the SIFT computation can be efficiently accelerated by ex-
ploiting task-level parallelism as well as data-level parallelism
[12]. To efficiently support task-level parallelism, we adopted a
multi-processor architecture instead of a heavy super scalar pro-
cessor design supporting simultaneous multi-threading (SMT)
[19], [20], because the former approach is more advantageous
for low-power designs. For a given performance requirement,
the operating frequency and power supply voltage of the chip
can be lowered using a larger number of processors [21] and
the independent power gating of each processor is also possible.
We implemented an 81.6 GOPS object recognition processor
[11]–[14] incorporating ten processing elements (PEs) for task-
level parallelism. To support data parallelism as well, each PE is
equipped with a single instruction multiple data (SIMD) instruc-
tion that accelerates the image filtering operations. In the pro-
posed processor, an ARM-based RISC and eight visual image
processing (VIP) memories are also integrated for PE manage-
ment and data communication buffers, respectively. In addition,
the VIP memories further accelerate the SIFT computation by
replacing the local maximum pixel location search operation
with a single read operation.

As will be shown in Section II, it is noticeable that each SIFT
task requires data from its former stage only. Therefore, efficient
computation of the SIFT is achieved by organizing the task-level
pipeline with proper mapping of the SIFT tasks into the ten PEs.
Supporting the pipelined execution of the SIFT tasks requires a
sophisticated communication scheme between the ten PEs and
eight VIP memories because the SIFT tasks exchange a large
amount of data simultaneously. We proposed the memory-cen-
tric network-on-chip (NoC) [11]–[14] to facilitate the pipelined
task execution in the proposed object recognition processor.

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 371

Communication buffers for the producer and consumer tasks
are managed by the memory-centric NoC, which also provides
memory transaction control. As a comprehensive extension to
our previous works [11]–[14], this paper introduces a memory-
centric NoC managed coherence and consistency protocol for
efficient pipelined task execution, which was not covered in our
previous works. Also, elaboration of the processor architecture,
programming model, and operation of the memory-centric NoC
are covered in more detail.

The remainder of the paper is organized as follows. In
Section II, the SIFT-based object recognition is described as a
target application. The desirable hardware features for efficient
SIFT calculation are also discussed. Next, the overall architec-
ture of the proposed processor is presented in Section III. The
advantages of adopting the SIMD PE and the VIP memory are
also briefly explained. Section IV introduces the coherence and
consistency scheme of the memory-centric NoC devised for
efficient pipelined task execution on a multi-core processor.
The programming model, operation of the memory centric
NoC, and resulting advantages are also explained. The perfor-
mance evaluations in Section V quantify the contributions of
the SIMD instruction, VIP memory, and the memory-centric
NoC in achieving high-performance and power-efficient object
recognition. After the implementation results are reported in
Section VI, conclusions are made in Section VII.

II. TARGET APPLICATION ANALYSIS

In this section, SIFT [15], the object recognition algorithm
used in this work, is described as a target application. The deci-
sions regarding the hardware architecture and features are made
based on the characteristics of the data processing and transac-
tions in the SIFT algorithm.

A. Overall Processing Flow

Fig. 1 shows the overall flow of the SIFT computation di-
vided into the: 1) key-point localization and 2) descriptor vector
generation stages. For the key-point localization, Gaussian fil-
tering with varying coefficients is performed repeatedly on the
input image. Then, subtractions among the filtered images are
executed to yield the difference of Gaussian (DoG) images. By
performing the DoG operation, the edges of different scales
are detected from the input image. After that, the locations
of the key-points are decided by finding the local maximum
pixels traversing a 3 3 search window over all DoG images.
The pixels with a local maximum value greater than a given
threshold become the key-points. Once the key-point locations
are selected, the DoG value of each key-point location is com-
pared with the DoG values at the same location of the upper and
lower DoG images, as shown in the third step of Fig. 1(a). The
scale of each key-point is decided by identifying the one with
the maximum DoG value among three adjacent DoG images.

The next stage of the key-point localization is the descriptor
vector generation. For each key-point location, pixels
of input image are sampled first, and then the gradient of the
sampled image is calculated. The sample size is decided
according to the scale of each key-point. Finally, a descriptor
vector is generated by computing the orientation and magnitude
histograms over sub regions of the sampled input image.

Fig. 1. Overall flow of the SIFT computation. (a) Key-point localization. (b)
Descriptor vector generation.

The dimension of the descriptor vector is decided in accordance
with . In this paper, the typical value of is in the range of 8

32 in proportion to the scale of each key-point, and we used
to generate the descriptor vectors. The and values

are decided by iterative MATLAB-based simulations regarding
both the computation complexity and correct object recognition
ratio. In addition, the number of key-points detected in each ob-
ject is about a few hundred.

B. Exploiting Parallelism

The massive computation performed in the SIFT algorithm
motivates the exploitation of parallel processing. For example,
the Gaussian filtering task is repeated for every filter coefficient,
and each Gaussian filtering repeats the convolution operation
over all pixels in the image. Furthermore, some types of paral-
lelism are revealed in these repeated tasks and operations.

In more specific terms, the Gaussian filtering tasks for dif-
ferent filter coefficients can be performed independently in mul-
tiple PEs. In other words, each concurrent task can be assigned
to a dedicated PE, thus, multiple tasks are performed in parallel.
This type of parallelism is called task-level parallelism. Mean-
while, a single instruction is applied repeatedly to the all pixels
in each Gaussian filtering task, which can be accelerated by an
SIMD structure exploiting data-level parallelism.

The advantages of exploiting task-level parallelism are
more apparent in the descriptor vector generation stage. The
processing of the descriptor vector generation stage starts with
fetching pixels from the input image, and the amount
of subsequent computation depends on the number of pixels.
Because varies according to the key-points, every computa-
tion workload also varies for each key-point. In this situation,
utilizing the multiple PEs in a SIMD fashion, which broadcasts
a single program to all PEs, is not a practical solution because
some PEs with small workloads will waste processing cycles
to be synchronized with other heavily loaded PEs. Therefore,

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

372 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 2. Breakdown of required computation for each SIFT tasks.

independent task executions for each PE in the multiple in-
struction streams multiple data (MIMD) mode is adequate for
the descriptor vector generation stage. However, the SIMD data
path is also applicable for each PE to accelerate single tasks
running on each PE.

The architecture of the object recognition processor in this
paper is designed to exploit both the task-level and data-level
parallelism. The multi-processor architecture with NoC and the
number of PEs in the system are determined considering the
characteristics of the tasks and the number of concurrent tasks
found in the SIFT algorithm. In addition, each PE is designed to
support four-way SIMD instructions facilitating data-level par-
allel processing in each task execution.

C. Hardware Acceleration

Fig. 2 shows the amount of computation required for each
SIFT task when it is performed for a 320 240 pixel image
using ARM instructions, excluding the overheads of instruction
fetching, managing data structures, and loop iterations. It is clear
that the Gaussian filtering and local maximum pixel search op-
eration are the two most demanding tasks. Gaussian filtering is
accelerated by task-level and data-level parallelism as described
in Section II-B. For the local maximum pixel search operation,
we decided to implement a special hardware accelerator.

The local maximum pixel search task spends vast amounts of
cycles to load the nine pixels of the 3 3 search window and
the following nine comparisons of the pixels. We implemented
a special memory, a VIP memory, to read out the address of
the local maximum pixel in response to the center pixel address
input from the search window. The detailed architecture and
operations of the VIP memory are described in Section III.

D. Data Transaction

Each task of the key-point localization consumes and pro-
duces a large amount of intermediate image data, and the data
should be transferred between the tasks. The data transaction
between tasks is performed through an on-chip interconnection.
Therefore, the NoC design should account for characteristics of
the data transaction. Below, we note two important characteris-
tics of the data transaction in the key-point localization stage.

The first point is regarding the data dependency between the
tasks. As illustrated in Fig. 1(a), the processing flow is com-
pletely pipelined, thus, data transactions only occur between
two adjacent tasks. This fact impacts the design of the coherence
and consistency scheme in the NoC as described in Section IV.

The second point is concerning the number of initiators and
targets in the data transaction. In the multi-processor architec-
ture, each task will be mapped to a group of processors, and the
number of processors involved in each task can be adjusted to
balance the execution time. For example, the Gaussian filtering
task in Fig. 1(a), having the highest computational complexity
due to the 2-D convolution, could use four processors to filter
operations with different filter coefficients, whereas all of the
DoG calculation is executed on a single processor. Due to the
flexibility in task mapping, the resulting data of one processor is
transferred to multiple processors of subsequent task or the re-
sults from multiple processors are transferred to one processor.
This implies that the data transaction will occur in the forms
of not only 1-to-1 but also 1-to- and -to-1, as shown in
Fig. 1(a), where the and may vary for each task according
to the task mapping. Furthermore, the NoC design is tailored
to support this type of data transaction efficiently, which is de-
scribed in Section IV in detail.

III. PROCESSOR ARCHITECTURE AND

HARDWARE COMPONENTS

In this section, the overall architecture of the proposed pro-
cessor and hardware components for fast object recognition are
briefly described.

A. Processor Architecture

The overall architecture of the proposed object recognition
processor is shown in Fig. 3. The main components of the pro-
posed processor are ten SIMD PEs, eight VIP memories, and
an ARM-based RISC processor. The RISC processor controls
the overall operation of the proposed processor by initiating
the execution of each PE. After initialization, each PE fetches
and executes an independent program for the parallel execution
of multiple tasks. The eight VIP memories provide communi-
cation buffers between the PEs and accelerate the local max-
imum pixel search operation. Interconnection between the ten
PEs and eight VIP memories is provided by the memory-centric
NoC. The memory-centric NoC is composed of five crossbar
switches, four channel controllers, and a number of network
interface modules (NIMs). The topology of the memory-cen-
tric NoC is decided by considering the characteristics of the
on-chip data transactions. For efficient support of the 1-to-
and -to-1 data transactions shown in Fig. 1(a), using the VIP
memory as a shared communication buffer is amenable to re-
move the redundant data transfers when multiple PEs read the
same data. Because the data flows through the pipelined tasks,
each PE accesses only a subset of the VIP memories to receive
the source data from its former PEs and send the resulting data
to its following PEs. This results in localized data traffic, which
allows tailoring of the NoC topology for low power and area
reduction. In the previous work of our research group [22], we
concluded that a hierarchical star topology is the most efficient
for reducing the area and power consumption when intercon-
necting a few tens of on-chip modules with localized traffic.
Therefore, the memory-centric NoC is configured in a hierar-
chical star topology instead of a regular mesh topology. By
adopting a hierarchical star topology NoC, the architecture of
the proposed processor is able to be determined so that average

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 373

Fig. 3. Architecture of the proposed object recognition processor.

hop counts between each PE and the VIP memories are reduced
at the expense of a large direct PE-to-PE hop count, which is
fixed to 3. This is also advantageous because most data trans-
actions are performed between the PEs and VIP memories, and
direct PE-to-PE data transactions rarely occur. In addition, the
VIP memory adopts dual read/write ports to facilitate short dis-
tance interconnections between the ten PEs and eight VIP mem-
ories. The NIMs are placed at each component of the processor
to perform packet generation and parsing.

B. SIMD PE

Fig. 4(a) shows a block diagram of the SIMD PE that has
five pipeline stages supporting a single thread execution. The PE
contains a 512 B instruction cache, a 512 B local memory, 16
general purpose registers (GPRs), and 12 coefficient dedicated
registers (CDRs). The size of the local memory is determined
by inspecting the working set size of the PEs using a software
simulation model. Since most of the processed data are written
directly to the VIP memories instead of being stored in the local
memory, 512 B is sufficient for computing the SIFT with mul-
tiple PEs in a pipelined task execution mode. To implement
low-overhead reciprocal, square-root, and division operations, a
modified version of the logarithmic arithmetic logic unit (ALU)
[34] is integrated with a conventional ALU, sharing a config-
urable carry save adder (CSA) tree. Through MATLAB-based
simulations, we verified that the 0.1% of error that arises from
the logarithmic ALU does not degrade the ratio of correct object
recognition.

To accelerate the Gaussian filtering tasks, special instructions
for image filtering are implemented in the SIMD PE. The in-
structions are sum of dot product (SDP) and load extension
(LE). For the SDP instruction, 12 CDRs to store the filter coef-
ficients are added. As shown in Fig. 4(b), the SDP instructions
calculate the 8-bit four-way SIMD multiplications and four sub-
sequent additions including accumulation in a single cycle. The
SDP instruction brings one operand from the GPR and the other
operand from the CDR. The LE instruction is a combination of
the 8-bit shift and byte load operation, which is designed to sup-

Fig. 4. PE architecture and image filtering instructions. (a) PE block diagram.
(b) Operation of the SDP and LE instructions.

port a seamless filter window movement over image data. Once
the filter coefficients and image data are stored in the CDR and
GPR, respectively, replacing the pixels of the GPR using the
LE instruction is equivalent to moving the filter mask over the
input image when the SDP instruction follows the series of the
LE instructions. By performing the SDP instruction, each PE
performs eight operations in a single cycle and its operation fre-
quency is designed to be 200 MHz. As a result, the ten PEs con-
tribute to the 16 GOPS of total performance.

C. Visual Image Processing Memory

The VIP memory is specially designed to find the location of
the local maximum pixel inside the 3 3 search window in a
single cycle. As shown in Fig. 5(a), searching for the local max-
imum pixel location requires 29 53 cycles in the ARM-based
RISC. By replacing this time consuming computation with a
single read operation, large performance gains are obtained. In
addition to the normal memory operations, the function of the
VIP memory is to read out the address of the local maximum
pixel inside the 3 3 search window in response to the ad-
dress input of the center pixel in the window. Since the local
maximum pixel search operation requires 41 cycles on an av-
erage, the eight VIP memories operating at 200 MHz gives a
65.6 GOPS performance gain.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

374 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 5. Visual image processing memory. (a) Cycle counts of local maximum
location search operation. (b) Architecture of the visual image processing
memory.

The overall architecture of the VIP memory is shown in
Fig. 5(b). In the VIP memory, 12 rows by 32 columns of 32-bit
pixels are stored, which result in a total of 1.5 kB capacity.
To compare the nine pixel values in one cycle, every row is
interleaved into three banks so that the bank number assigned
for each row is decided using a modulo-3 operation. Three
pixels in the same row are compared first inside the bank, and
then the results from the three banks are compared again to
find the local maximum pixel from among the nine pixels. The
address of the local maximum pixel is automatically generated
according to the comparison result via the address generation
unit. At each bank, three comparison amplifiers (CAs) are
integrated into every four bit line pairs to read the three pixel
values simultaneously. The transistor size of the CA is smaller
than a normal sense amplifier because it does not drive long

capacitive DB lines. To minimize the area overhead of the
comparison logic in the memory, a bitwise competition logic
(BCL) [23] is also devised. By adopting the BCL, the transistor
count of the comparator is reduced from 2400 to 536 when
compared with the conventional adder based comparator. More
details of the VIP memory are described in [14].

IV. MEMORY-CENTRIC NOC

The basic operation of the NoC is to facilitate high-band-
width on-chip data transactions. However, as an interconnection
structure of a multi-core processor, supporting frequent shared
data transactions, the NoC must handle the coherence and
consistency issue of the multi-core processor. In this section,
previous researches concerning the coherence and consistency
of the shared memory based multi-processor system are briefly
reviewed. Then, we propose a coherence and consistency
scheme managed by the memory-centric NoC that is tailored
for efficient pipelined task execution in the proposed processor.
The coherence and consistency protocols and underlying mech-
anisms implemented in the memory-centric NoC are explained
first. Then, the resulting programming model and internal
operation of the memory-centric NoC are also described.

A. Memory-Centric NoC Coherence and Consistency

A coherence scheme manages how the correct value of
shared variable is read when multiple copies of the variable
may exist, and the consistency scheme defines the moment of
reading the correct shared variable for each task. Two basic
and traditional coherence schemes are bus-snooping and direc-
tory-based coherence protocols [24]–[26]. The bus-snooping
protocol is not suitable for large-scale multi-core processor
due to the poor scalability of the shared bus. Even though the
directory-based protocol is developed for high-performance
interconnections such as an on-chip network, the overhead of
managing large directories increases intolerably when bulky
data transactions occur between a number of PEs. In the past
decade, transactional memory [27], [28] and thread level spec-
ulation [19], [29], [30] have been proposed as more advanced
coherence and consistency schemes that take advantage of
speculative execution. However, a strong data dependency
between adjacent stages of the pipelined task makes it difficult
to obtain performance gains from the speculation of shared
variables.

Together with the widespread adoption of NoCs in the
MP-SoC design field, there have been studies concerning NoC
architectures together with the consistency and coherency
schemes [35]–[38]. Bolotin et al. [35] proposed to embed
the priority support inside their Vanilla NoC to differentiate
between short control signals and long data messages. The
low-latency control signals contribute to reducing the average
L2 cache access latency by making the L2 caches respond
earlier to coherence packets, whereas Eisley et al. [36] pro-
posed a joint optimization of the NoC and directory based
coherence protocol. The average memory access latency is
reduced by embedding directories within each NoC router so
that each local node accesses the nearest copy of a cache line
instead of the farther home directory. In the case of [37], a
software-based solution that relies on the separate management

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 375

Fig. 6. (a) Fixed address regions for the read/write of shared data transaction and (b) ordering rule among synchronization sections.

of non-cacheable shared data and cacheable local data was
proposed to reduce the overhead of implementing an on-chip
coherence scheme in an NoC-based multi-core processor. In
addition, the speed up of coherence message transactions,
exploiting the knowledge of physical interconnections of
an NoC, was also proposed [38]. Although the studies of
[35]–[38] were performed regarding NoC-based architectures,
they mainly focused on general purpose applications running
with the distributed L2 caches. However, the memory-centric
NoC aims to support the pipelined execution of multiple tasks
with dynamically managed on-chip shared memories that are
transparent to the PEs in the proposed processor.

Recently, streaming consistency [31] was proposed focusing
on stream processing domains. In the streaming consistency
model, the shared data are exchanged through communication
buffers between explicit acquire and release synchronization
sections. Efficient pipelined task execution is achieved by
allowing the reordering of the synchronization sections that
are associated with the different communication buffers. In
the streaming consistency, the communication buffers were
managed using the C-HEAP protocol [32], [33]. The draw-
backs of the C-HEAP protocol in computing task pipelined
object recognition are as follows. The C-HEAP protocol only
supports first-input–first-output (FIFO)-based data transactions
and results in inefficiencies when data access patterns are
different between the producer and consumer tasks. In addition,
the C-HEAP protocol requires explicit management of the
read/write pointer in the FIFOs, and either polling or interrupt
is required before accessing an available shared memory.
Supporting 1-to- data transactions also has an overhead of
copying the administration information of the FIFO for each
consumer task. In the latter part of this section, we propose
the memory-centric NoC managed coherence and consistency
schemes for efficient pipelined task execution on the proposed
processor.

1) Coherence: At each PE of the proposed object recogni-
tion processor, the fixed address region is predefined for the

read/write accesses of the shared data. As shown in Fig. 6(a), the
write address region is divided into three write channels, and the
read address region is divided to distinguish both the channel
number and the producer PEs. For each transaction, the pro-
ducer and consumer PEs are defined, and then one VIP memory
is assigned as a data transaction buffer for the PEs involved. To
maintain data coherence, the memory-centric NoC forwards the
read/write accesses of the shared data address region to the as-
signed VIP memory. Until one of the available VIP memories
is assigned by the memory-centric NoC, any access to the ad-
dress region of the shared data read/write is blocked for both
producer and consumer PEs. A limitation of this mechanism is
that caching is not allowed for the shared data address region,
but this does not degrade the overall performance because the
shared data delivered between pipelined tasks are rarely reused.

2) Consistency: In the memory-centric NoC managed
consistency, all shared data transactions are performed inside
the explicit synchronization section. In a producer PE, open
and close channel commands are sent to the channel controller
of the memory-centric NoC at the start and end of the shared
data transaction, respectively. Correspondingly, consumer PEs
should assert the end channel command at the end of reading
shared data from the producer PE. Reordering among the
synchronization sections, which are associated with different
communication buffers (i.e., VIP memories), is allowed for
the memory-centric NoC managed consistency, similar to the
stream consistency model [31]. A maximum of three syn-
chronization sections are able to progress simultaneously for
each PE using different channel numbers; imposing ordering
between the former and subsequent synchronization sections
is also possible using the same channel number. This ordering
rule of the synchronization sections is shown in Fig. 6(b).
Inside the synchronization section, the read accesses from the
consumer PEs to an empty entry of the VIP memory, which is
not yet written by the producer PE, are automatically blocked
by the memory-centric NoC to prevent the consumer PEs
reading false data.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

376 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 7. Programming model of the memory-centric NoC.

The uniqueness of the memory-centric NoC is that it supports
dynamic reconfiguration of the on-chip networks so that fixed
address regions, instead of simple FIFO queues, are used for
the shared data transactions between the PEs. This technique
removes the overhead of obtaining dynamic memory pointers
for shared data transactions and also reduces the processor ac-
tivity. Compared with the stream consistency model [31], the
memory-centric NoC is more efficient for pipelined task execu-
tion. By the hardware support of the memory-centric NoC, the
overhead of polling available memory and updating the read/
write pointer of the communication buffers is removed. In ad-
dition, 1-to- data transactions are supported with a very low
overhead over 1-to-1 data transactions by allowing the manip-
ulation of the routing lookup tables (LUT) in the NIMs. Based
on these underlying coherence and consistency rules, the pro-
gramming model of the memory-centric NoC is explained in
Section IV-B.

B. Programming Model

In the memory-centric NoC, all shared data transactions are
explicit. A shared data transaction is initiated by a producer PE
writing an open channel command to the channel controller. In
the open channel command, a channel number and a list of con-
sumer PEs are specified. After that, the producer PE writes the
data to be stored in the write address region of Fig. 6(a) that cor-
responds to the channel number specified in the open channel

command. In contrast to the stream consistency [31] model, a
buffer availability check is not necessary because it is automat-
ically performed by the memory-centric NoC, thus the buffer is
transparent to the software. When there is an available memory
in the eight VIP memories, the writes of the shared data are di-
rected to the assigned VIP memory. Access to the write address
region is blocked if there is no available VIP memory. For each
consumer PE, reading the shared data is initiated by simply ac-
cessing the read address region of Fig. 6(a), which indicates the
corresponding producer PE and channel number. No waiting
loops are required to read the valid shared data from the pro-
ducer PE because the memory-centric NoC also automatically
blocks each read access to the read address region until the cor-
responding write operation by the producer PE is completed. At
the end of the shared data read, the consumer PE should write an
end channel command to the channel controller. In summary, a
1-to- shared data transaction starts with a producer PE writing
an open channel command to the channel controller. After that,
it finishes with the channel controller receiving a close channel
command and end channel commands from the producer PE
and consumer PEs, respectively. Fig. 7 illustrates an example
of a pseudo code where PE 0 delivers shared data through two
write channels. Channel 0 is used to send the shared data to PE
2 and PE 3, and channel 1 is used for PE 4.

In the memory map of Fig. 6(a), the same amount of address
regions are assigned to each shared data read/write channel. The

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 377

Fig. 8. Communication buffer management operation of the memory-centric NoC.

20 MSBs of the address in the PE memory map are used as the
base address for the routing administration of the memory-cen-
tric NoC. The remaining 12 LSBs are used as a common pointer
to the shared data in the VIP memory for both the producer
and consumer PEs. This addressing scheme removes the lim-
itation of imposing sequential access of shared data when FIFO
buffers are used, instead of randomly accessible memory as in
the stream consistency [31] and C-HEAP protocol [32], [33].

C. Operation

In this subsection, the internal operation of the memory-cen-
tric NoC that provides the coherence and consistency schemes
is described. The operation of the memory-centric NoC is
divided into two parts. The first part manages the utilization
of the communication buffers, i.e. the VIP memories, between
the producer and consumer PEs. The other part supports the
memory transaction control after the VIP memory is assigned
for the shared data transactions. The former operation removes
the overhead of polling available buffer spaces and the latter
one reduces the overhead of waiting for valid data from the
producer PE. Based on the memory-centric NoC operation,
the advantages in supporting efficient 1-to- and -to-1 data
transactions are also explained.

Communication Buffer Management: The overall procedure
of the communication buffer management in the memory-cen-
tric NoC is depicted in Fig. 8. Throughout the procedure de-
scription, we assume that PE 1 is the producer PE and PEs 3

and 4 are consumer PEs. As mentioned in Section IV-B, the op-
eration of the memory-centric NoC is initiated by PE 1 writing
an open channel command to the channel controller connected
to the same crossbar switch [see Fig. 8(a)]. The open channel
command is a simple memory mapped write and transfers using
a normal packet. In response to the open channel command,
the channel controller reads the global status register of the
VIP memories to check the utilization status. After selecting
an available VIP memory, the channel controller updates the
routing LUTs in the NIMs of PEs 1, 3, and 4, so that accesses
to the shared data address region are directed to the assigned
VIP memory [see Fig. 8(b)]. The routing LUT update operation
is performed by the channel controller sending the configura-
tion (CFG) packets, which are transparent to the PEs. At each
PE, access to the shared data address region is blocked until the
routing LUT update operation finishes. Once the VIP memory
assignment is completed, a shared data transaction is executed
using the VIP memory as a data communication buffer. Read
and write accesses to the VIP memory are performed using
normal read/write packets that consist of an address and/or data
fields [see Fig. 8(c)]. After the shared data transaction com-
pletes, PE 1 sends a close channel command, and PEs 2 and
3 send end channel commands to the channel controller. After
that, the channel controller sends CFG packets to the NIMs of
PEs 1, 3, and 4 to invalidate the corresponding routing LUT en-
tries and to free up the used VIP memory [see Fig. 8(d)].

From the communication buffer management operation, effi-
cient 1-to- shared data transaction support is clearly visible.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

378 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 9. Memory transaction control scheme of the memory-centric NoC.

Compared with the 1-to-1 shared data transaction, the required
overhead is only sending additional () CFG packets at the
start/end of a synchronization section. In addition, an -to-1
data transaction is also easily achieved by the consumer PE
simply reading address regions for the shared data read in
the memory map of Fig. 6(a).

Memory Transaction Control: In the memory-centric NoC
managed consistency scheme, no explicit waiting loop is neces-
sary to prevent consumer PEs reading the shared data too early
before the producer PE writes valid data. In this subsection,
the operation of the memory transaction control that implicitly
manages the synchronization of shared data transactions is de-
scribed.

To support the memory transaction control, the memory-cen-
tric NoC tracks every write access to the VIP memory from the
producer PE after the VIP memory is assigned for shared data
transactions. This is realized by integrating a valid bit array and
valid check logic inside the VIP memory. In the VIP memory,
every word has a 1-bit valid bit entry that is dynamically up-
dated. The valid bit array is initialized when a processor resets
or at the end of shared data transactions. By the write access
from the producer PE, the valid bit of the corresponding ad-
dress is set to HIGH. When an empty memory address with a
LOW valid bit is accessed by the consumer PEs, the valid check
logic asserts an INVALID signal to prevent reading false data.
Up to nine entries of the valid bit array can be checked simul-
taneously to support the local maximum pixel search operation,
which reads the nine pixels in the 3 3 search window in a
single cycle.

Fig. 9 illustrates the overall procedure of the proposed
memory transaction control. We assume again that PE 1 is the
producer PE, and PEs 3 and 4 are consumer PEs. Because the
memory-centric NoC supports arbitrarily ordered as well as
sequentially ordered shared data transactions, two consumer
PEs are able to read the shared data with different access orders.
In the example data transaction, PE 3 reads the shared data at
address 0 0 and PE 4 reads the shared data at address 0 8,
whereas PE 1 writes the valid data at only address 0 0 of the
VIP memory [see Fig. 9(a)]. Because the valid bit array has a
HIGH bit for the address 0 0 only, the NIM of PE 4 obtains an

INVALID packet instead of normal packets with valid data [see
Fig. 9(b)]. Then, the NIM of PE 4 periodically retries reading
valid data at address 0 8 until PE 1 also writes valid data at
address 0 8 [see Fig. 9(c)]. Meanwhile, the operation of PE 4
is in a hold state. After reading the valid shared data from the
VIP memory, the operation of the PE continues [see Fig. 9(d)].

The advantages of the proposed memory transaction control
are reduced NoC traffic and PE activity, which contribute to
a low-power operation. For consumer PE polls on the valid
shared data, four flits—two flits for a read request and two
flits for a read response—traverse the NoC at every iteration
of polling, and the PE should execute the compare and branch
instructions repeatedly until the valid shared data is read. In
the memory-centric NoC managed memory transaction con-
trol, three flits—two flits for a read request and one flit for
an INVALID notification packet—traverse the NoC, and the
consumer PE is in an idle state. The amount of reduction in
flit transactions is reported in Section V. In the perspective
of shared memory utilization, the other advantage of memory
transaction control is that it enables fine grained data transac-
tions between the producer and consumer PEs. When shared
data are delivered using conventional polling-based synchro-
nization, the unit of data transaction should be sufficiently
large to avoid the overhead of checking validity of every
shared variable in the program execution. In this case, double
buffering is also necessary to hide the latency of producing
bulky data. In the memory-centric NoC, however, a consumer
PE is able to read the shared data from a producer PE as soon
as it is computed, without waiting until a certain amount of
shared data is accumulated in the shared memory region, which
is usually divided into front and back buffers. As a result,
the memory-centric NoC improves the efficiency of memory
utilization by removing the overhead of double buffering.

V. PERFORMANCE EVALUATIONS

This section quantifies the performance improvement in com-
puting the SIFT algorithm, which is obtained by active utiliza-
tion of the SIMD PE, VIP memory, and the memory-centric

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 379

Fig. 10. Mapping of the SIFT tasks for the Pipelined Task execution mode.

NoC. The simulation setup is briefly described first, and the ad-
vantages of pipelined task execution over sequential task execu-
tion with data parallelism are reported. The performance gains
resulting from the SIMD PE and VIP memory are also presented
together. After that, the effects of the memory transaction con-
trol in the memory-centric NoC with regard to the number of
internal data transactions are discussed with traffic statistics of
the memory-centric NoC.

A. Simulation Setup

For chip implementation of the proposed object recognition
processor, we implemented a cycle accurate Verilog model
of the proposed processor, and this is the base of the perfor-
mance evaluations in this section. To show the advantages of
pipelined task execution in computing the SIFT algorithm, the
execution times of the key-point localization stage in Fig. 1(a)
are measured for two different task mappings. We named
these two mappings as data parallel and pipelined task modes.
In the data parallel mode, all PEs of the proposed object
recognition processor execute the same task simultaneously
by partitioning the region of operation in the input image.
However, each of the key-point localization tasks is computed
in a sequential manner. For the pipelined task mode, all tasks
of the key-point localization are properly mapped on the ten
PEs of the proposed processor and are executed simultaneously
in the pipeline. The input image is sequentially fetched and
flows through the pipeline to yield the result data to be written
in the external memory. In this performance comparison, the
descriptor vector generation stage of Fig. 1(b) is excluded
because it is only executed in a task-parallel manner and makes
no difference to the execution time. The task mapping in the
pipelined task execution mode is shown in Fig. 10. Since the
Gaussian filtering and local maxim pixel search tasks require
vast amounts of computation, four processors are assigned for
each task. The arrows in Fig. 10 show the data flow between
the PEs performing the assigned tasks. In addition, the color
conversion task, which converts red-green-blue (RGB) color
space to the hue-saturation-intensity (HIS) color space [15], is
added considering the external video input of the verification
system in Section VI.

Table I describes the simulation cases used for the perfor-
mance evaluations. From case A to case F, the proposed hard-
ware acceleration techniques, such as the SIMD instruction and
VIP memory, are sequentially applied one by one to reveal the

TABLE I
SIMULATION CASES AND CORRESPONDING FEATURES

contributions of each technique. The proposed memory transac-
tion control described in Section IV-C is only applicable to the
simulation cases adopting the pipelined task execution mode,
which utilize the memory-centric NoC.

B. Data Parallel Versus Pipelined Task Execution

For the six simulation cases in Table I, the execution times
of performing the key-point localization stages for a 320 240
pixel image are compared in Fig. 11. The execution times for
the 2.3 GHz Intel Core 2 Duo and 200 MHz ARM9 TDMI pro-
cessors are compared to prove the superior performance of the
proposed processor over the conventional state-of-the-art pro-
cessors. The execution times of the six simulation cases are cal-
culated using the cycle counts obtained from the cycle-accurate
Verilog simulation and considering a 200 MHz operation fre-
quency. To measure the execution times of the Core 2 Duo and
ARM9 TDMI processors, the key-point localization stage is de-
scribed in C-language and compiled with a conventional gcc and
ARM compiler, respectively. The execution time of the Core 2
Duo processor is measured using a times() function supported
by the gcc compiler, and the ARMulator instruction set simu-
lator is used to obtain the execution time of the ARM9 TDMI
processor.

By tracking the reduction in the execution time from cases A
to F, the advantages of the proposed techniques are clearly rep-
resented. At first, the performance gain results from use of the
LE instruction is relatively small . However, the SDP
SIMD instruction reduces the execution time of the Gaussian
filtering task drastically . The execution time is fur-
ther reduced by switching to the pipelined task execution mode
from the data parallel execution mode, because it reduces the

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

380 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 11. Execution time comparisons for key-point localization stage of the
SIFT computation.

Fig. 12. Amount of external memory data transactions.

overhead of external memory transactions with long access la-
tencies . After that, adopting the VIP memories in
the task-level pipeline doubles the performance gain .
The efficiency of the proposed memory transaction control in
the memory-centric NoC is revealed by comparing the execu-
tion times of simulation cases E and F. The proposed object
recognition processor achieves 48.8% and 98.6% reductions in
execution times, compared with the Core 2 Duo and ARM9 pro-
cessors, respectively.

The main advantage of the pipelined task execution mode is
the reduced number of external memory transactions, and this
is clearly visible in Fig. 12. The number of external memory
data transactions is compared for simulation cases C and F.
In the data parallel execution mode, the number of external
memory transactions is approximately 22 times higher than the
pipelined task execution mode because a vast amount of inter-
mediate image data are fetched in and dumped out.

When it is possible to achieve a sufficient performance with a
low-speed external memory, the power consumed in the external
memory can be saved. The contribution of the memory-cen-
tric NoC for power-efficient object recognition is to facilitate

Fig. 13. Variations of total execution time according to the external memory
bandwidth.

the pipelined task execution so that the overall object recogni-
tion performance is sustained insensitive to the external memory
bandwidth degradation. This case is shown in Fig. 13. The total
execution times of the six simulation cases are compared with
respect to the different external memory operation frequencies.
In the evaluation, the external memories that operate at 1, 1/2,
and 1/4 speed of the proposed processor are used. For sim-
ulation cases A–C, which belong to the data parallel execu-
tion mode, the average performance degradations are 21.1% and
46.3% when 1/2 and 1/4 speed external memories are used, re-
spectively. However, the performance degradations of the simu-
lation cases that execute a pipelined task mode are much lower.
In simulation cases D–F, the average performance degradations
are 1% and 15.2% for the 1/2 and 1/4 speed external memo-
ries, respectively.

C. Effects of the Memory Transaction Control

In this subsection, the effects of the proposed memory trans-
action control on the internal traffic of the on-chip network are
evaluated. Fig. 14 shows the number of internal data transac-
tions for simulation case F. For comparison, the memory trans-
action control of the memory-centric NoC is also replaced with
a polling-based shared data transaction. For the polling-based
scheme, a producer PE writes the result data in the unit of the
one VIP memory row and then updates the write pointer that
is polled by the consumer processors. In Fig. 14, the two left
bars for each PE represent the number of data transactions for
the memory transaction control, and the two right bars for each
PE are the results gained using the polling-based scheme. It
is noticeable that the number of inbound flits increases when
the memory transaction control is replaced with the polling-
based shared data transaction. This is because the size of the re-
sponse packet increases when the PE performs polling instead
of the NIM. The number of the outbound flits also increases be-
cause the PEs send additional instructions fetch requests for the
polling loops inserted. With the memory transaction control of
the memory-centric NoC, the number of internal transactions is

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 381

Fig. 14. Internal data transactions of the proposed processor.

reduced by 13% compared with the polling-based scheme. This
also shows that the memory-centric NoC is beneficial for effi-
cient computing of SIFT-based object recognition.

VI. IMPLEMENTATION RESULTS

The proposed object recognition processor based on the
memory-centric NoC is implemented using a 0.18- m standard
CMOS process technology. For the VIP memory implementa-
tion, we fabricated a full custom design because modification of
the internal memory cell and sense amplifier structure was nec-
essary. The other parts of the chip are designed using Verilog
HDL, synthesized with logic cell libraries, and placed/routed
using a Synopsys Design Compiler and Astro tool chain. The
size of the implemented chip is 7.7 5 mm and the opera-
tion frequency is 400 MHz for the memory-centric NoC and
200 MHz for the other parts of the chip. The chip photograph,
summary of the implementation results, and power breakdown
are shown in Fig. 15. The reported power consumption is the
peak power consumption assuming that all VIP memories
are used in the local maximum pixel location search mode,
and the memory-centric NoC and all PEs are fully loaded.
Due to the heavily parallel attribute of the local maximum
location search operation which performs nine reads, four
3-operanded comparisons and an address calculation in a
single cycle, the VIP memories account for more than half of
the total power consumption. However, the power overhead
of the memory-centric NoC is relatively small. The power
consumption of the VIP memories is obtained by HSPICE
simulation under the conditions of 25 C, 1.8 V power supply
voltage, and typical corner transistors. For the other parts of
the chip, the power consumption is estimated using a Synopsys
Power Compiler, which calculates the power consumption with
a post-synthesis gate level netlist and the traces of switching
activity result from the Verilog HDL simulation. The 81.6
GOPS peak performance results from summing the 16 GOPS
obtained from the SIMD operation of the ten PEs and the 65.6
GOPS of the eight VIP memories. For verification, we also im-
plemented a verification system as shown in Fig. 16(a). Using
the field-programmable gate array (FPGA), we implemented
an external memory interface, video camera subsystem, and
LCD controller. The correct chip operation is separately tested
up to 200 MHz, and the operation speed of the chip in the

Fig. 15. Chip photograph, implementation summary, and power breakdown of
the proposed object recognition processor.

Fig. 16. (a) Verification system and (b) key-point localization results.

verification system is 100 MHz considering the reliability of
the operation that requires synchronization with the FPGA. The
total measured power consumption of the verification system
shown in Fig. 16(a) is 2.6 W, and the proposed processor
consumes 540 mW when it computes the key-point localization
stage of the SIFT at a 100 MHz operation frequency with a
1.8 V supply voltage. Fig. 16(b) shows the implemented chip
performing the key-point localization stage of the SIFT. The
rectangles encompass the localized key points and are placed
on the points of human attention, such as the eyes, nose, and
arms of the doll.

VII. CONCLUSION

To answer the demand for a high-performance and power-ef-
ficient object recognition processor design, we implemented an
81.6 GOPS object recognition processor based on a memory-
centric NoC. In this paper, we have shown that the processor
design based on the analysis of the target application achieves
vast performance gains over the conventional general purpose

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

382 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

processors. For that purpose, three perspectives of the chip de-
sign—processor architecture, hardware acceleration, and pro-
gramming model—are considered simultaneously.

At first, the architecture of the proposed processor is deter-
mined by carefully considering the intrinsic parallelism and
characteristics of the data transactions in the target application.
To support both task and data parallelism in the SIFT object
recognition, the decision of multi-processor architecture and
SIMD data path integration for each PE are made in advance.
Then, we observed the unidirectional data flow in a pipelined
task execution of the SIFT to place on-chip shared data buffers
(VIP memories) among the PEs. The hierarchical star topology
of the memory-centric NoC is adopted to provide flexibility
in configuring the task-level pipeline. In the NoC, the PEs
and VIP memories are located so that the average hop count
between each PE and the VIP memories is minimized since
direct PE-to-PE data transactions rarely occur. The reduction in
power consumption and chip area is an additional advantage of
adopting a hierarchical star topology instead of the conventional
mesh topology. Second, the remaining performance bottlenecks
resulting from the two most demanding operations of the SIFT
computation are resolved by integrating the appropriate hard-
ware accelerations, namely the SDP instruction and the VIP
memories. Finally, we defined the coherence and consistency
protocol regarding the proposed processor architecture and the
memory-centric NoC. The corresponding programming model
is also proposed to reduce the polling overhead of the shared
buffer management and data transaction control between the
producer and consumer PEs in the pipelined task execution.

Regarding the three design perspectives described above, we
implemented an 81.6 GOPS object recognition processor using
a 0.18- m CMOS process, and it computes the key-point local-
ization stage of the SIFT approximately two times faster than
the 2.3 GHz Core 2 Duo processor while only consuming 1.4
W of power. By exploiting the proposed object recognition pro-
cessor, the implementation of high performance and low power
platform for mobile intelligent robots is enabled.

REFERENCES

[1] S. Kyo, T. Koga, S. Okazaki, and I. Kuroda, “A 51.2 GOPS scalable
video recognition processor for intelligent cruise control based on a
linear array of 128 4-way VLIW processing elements,” in IEEE Int.
Solid-State Circuits Conf. Dig. Techn. Papers, 2003, vol. 1, pp. 48–477.

[2] W. Raab, N. Bruels, U. Hachmann, J. Harnisch, U. Ramacher, C. Sauer,
and A. Techmer, “A 100 GOPS programmable processor for vehicle
vision systems,” IEEE Des. Test Comput., vol. 20, no. 1, pp. 8–15, Jan.
–Feb. 2003.

[3] J. Tanabe, Y. Taniguchi, T. Miyamori, Y. Miyamoto, H. Takeda, M.
Tarui, H. Nakayama, N. Takeda, K. Maeda, and M. Matsui, “Visconti:
Multi-VLIW image recognition processor based on configurable
processor,” in Proc. IEEE Custom Integr. Circuits Conf., 2003, pp.
185–188.

[4] U. Ozguner, C. Stiller, and K. Redmill, “Systems for safety and au-
tonomous behavior in cars: The DARPA grand challenge experience,”
Proc. IEEE, vol. 95, no. 2, pp. 397–412, Feb. 2007.

[5] J. Kumagai, “A robotic sentry for Korea’s demilitarized zone,” IEEE
Spectrum, vol. 44, no. 3, pp. 16–17, Mar. 2007.

[6] S. Ahn, M. Choi, J. Choi, and W. K. Chung, “Data association using
visual object recognition for EKF-SLAM in home environment,” in
Proc. IEEE Int. Conf. Intell. Robots Syst., 2006, pp. 2760–2765.

[7] P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno, “Augmenting SLAM
with object detection in a service robot framework,” in Proc. IEEE Int.
Symp. Robot Human Interactive Commun., 2006, pp. 741–746.

[8] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “A case study of mo-
bile robot’s energy consumption and conservation techniques,” in Proc.
IEEE Int. Conf. Adv. Robot., 2005, pp. 492–497.

[9] C. Y. Lin, P. C. Jo, and C. K. Tseng, “Multi-functional intelligent robot
DOC-2,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Dec. 2006,
pp. 530–535.

[10] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and
K. Fujimura, “The intelligent ASIMO: System overview and integra-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2002, vol. 3,
pp. 2478–2483.

[11] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo, “Solutions for
real chip implementation issues of NoC and their application to
memory-centric NoC,” in Proc. ACM/IEEE Int. Symp. Netw.-on-Chip,
May 2007, pp. 30–39.

[12] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo, “An 81.6 GOPS ob-
ject recognition processor based on NoC and visual image processing
memory,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2007, pp.
443–446.

[13] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo, “Implementations
of memory-centric NoC for 81.6 GOPS object recognition processor,”
in Proc. IEEE Asian Solid-States Circuits Conf., Nov. 2007, pp. 47–50.

[14] J.-Y. Kim, D. Kim, D. Kim, S.-J. Lee, K. Kim, S. Jeon, and H.-J. Yoo,
“Visual image processing RAM for fast 2-D data location search,” in
Proc. IEEE Eur. Solid-State Circuits Conf., Sep. 2007, pp. 324–327.

[15] D. G. Lowe, “Distinctive image features from scale-invariant key
points,” ACM Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[16] M. D. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar
operand networks,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 2,
pp. 145–162, Feb. 2005.

[17] F. Bertolli, P. Jensfelt, and H. I. Christensen, “SLAM using visual scan-
matching with distinguishable 3D points,” IEEE/RSJ Int. Conf. Intell.
Robots Syst., pp. 4042–4047, Oct. 2006.

[18] Z. Nan, L. Maohai, and H. Bingrong, “Active mobile robot simul-
taneous localization and mapping,” in Proc. IEEE Int. Conf. Robot.
Biomimetics, Dec. 2006, pp. 1671–1681.

[19] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.
Tullsen, “Simultaneous multithreading: A platform for next-generation
processors,” IEEE Micro, vol. 17, no. 5, pp. 12–19, Sep.–Oct. 1997.

[20] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas, “Parti-
tioning multi-threaded processors with a large number of threads,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Mar. 2005, pp.
112–123.

[21] T. R. Jacobs, V. A. Chouliaras, and D. J. Mulvaney, “Thread-parallel
MPEG-2, MPEG-4 and H.264 video encoders for SoC multi-processor
architectures,” IEEE Trans. Consumer Electron., vol. 52, no. 1, pp.
269–275, Feb. 2006.

[22] K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power networks-on-chip for
high-performance SoC design,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 2, pp. 148–160, Feb. 2006.

[23] J.-Y. Kim and H.-J. Yoo, “Bitwise competition logic for compact dig-
ital comparator,” in Proc. IEEE Asian Solid-States Circuits Conf., Nov.
2007, pp. 59–62.

[24] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in Proc. ACM/IEEE
11th Ann. Int. Symp. Comput. Arch., 1984, pp. 348–354.

[25] F. Dahlgren, M. Dubois, and P. Stenstrom, “Performance evaluation
and cost analysis of cache protocol extensions for shared-memory mul-
tiprocessors,” IEEE Trans. Comput., vol. 47, no. 10, pp. 1041–1055,
Oct. 1998.

[26] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quan-
titive Approach, 3rd ed. San Mateo, CA: Morgan Kaufmann, 2003,
pp. 528–664.

[27] A.-R. Adl-Tabatabi, C. Kozyrakis, and B. Saha, “Unlocking concur-
rency: Multicore programming with transactional memory,” ACM
Queue, vol. 4, no. 10, pp. 24–33, Dec. 2006.

[28] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B.
Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in Proc. 31st Ann.
Int. Symp. Comput. Arch., 2004, pp. 19–23.

[29] M. K. Prabhu and K. Olukotun, “Using thread-level speculation to sim-
plify manual parallelization,” in Proc. ACM Principles Practices Par-
allel Program., 2003, pp. 1–12.

[30] J. G. Steffan and T. C. Mowry, “The potential for using thread-level
data speculation to facilitate automatic parallelization,” in Proc. Int.
Symp. High-Perform. Comput. Arch., Feb. 1998, pp. 2–13.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

KIM et al.: 81.6 GOPS OBJECT RECOGNITION PROCESSOR BASED ON A MEMORY-CENTRIC NoC 383

[31] J. W. van den Brand and M. Bekooij, “Streaming consistency: A model
for efficient MPSoC design,” in Proc. IEEE 10th Eur. Micro Conf.
Digit. Syst. Des. Arch., Methods Tools, Aug. 2007, pp. 27–34.

[32] O. P. Gangwal, A. Nieuwland, and P. A. Lippens, “Scalable and
flexible data synchronization scheme for embedded HW-SW
shared-memory systems,” in Proc. IEEE Int. Symp. Syst. Synth.,
2001, pp. 1–6.

[33] A. Nieuwland, J. Kang, O. Gangwal, R. Sethuraman, N. Busa, K.
Goosens, R. Pesetllopis, and P. Lippens, “C-HEAP: a heterogeneous
multi-processor architecture template and scalable and flexible pro-
tocol for the design of embedded signal processing systems,” Kluwer
Des. Autom. Embed. Syst., Oct. 2002.

[34] H. Kim, B.-G. Nam, J.-H. Sohn, J.-H. Woo, and H.-J. Yoo, “A 231-
MHz, 2.18-mW 32-bit logarithmic arithmetic unit for fixed-point 3-D
graphics system,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp.
2373–2381, Nov. 2006.

[35] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny, “The power
of priority: NoC based distributed cache coherency,” in Proc. IEEE 1st
Int. Symp. Netw.-on-Chip, May 2007, pp. 117–126.

[36] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in
Proc. IEEE/ACM 39th Int. Symp. Microarch., Dec. 2006, pp. 321–332.

[37] F. Petrot, A. Greiner, and P. Gomez, “On cache coherency and memory
consistency issues in NoC based shared memory multiprocessor SoC
architectures,” in Proc. IEEE 9th EUROMICRO Conf. Digit. Syst. Des.,
2006, pp. 53–60.

[38] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J.
B. Carter, “Interconnect-aware coherence protocols for chip multipro-
cessors,” in Proc. 33rd Ann. Int. Symp. Comput. Arch., Jun. 2006, pp.
339–351.

Donghyun Kim (S’03) received the B.S. degrees
in electrical engineering and computer science from
Korea Advance Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2003, where he is
currently pursuing the Ph.D. degree in electrical
engineering and computer science.

His research interests include network-on-chip de-
sign, multi-processor design, and parallel image pro-
cessing. He is currently working for an analysis of
on-chip data transactions and task mappings of appli-
cations with streamed data flow into multi-processor

SoC architectures.

Kwanho Kim (S’04) received the B.S. and M.S. de-
grees in electrical engineering from Korea Advanced
Institute of Science and Technology (KAIST), Dae-
jeon, Korea, in 2004 and 2006, respectively, where
he is currently pursuing the Ph.D. degree in electrical
engineering and computer science.

In 2004, he joined the Semiconductor System
Laboratory (SSL), KAIST, as a Research Assistant.
His research interests include VLSI design for object
recognition, architecture, and implementation of
NoC-based SoC.

Joo-Young Kim (S’05) received the B.S. and M.S.
degrees in electrical engineering and computer sci-
ence from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2005 and
2007, respectively, where he is currently pursuing the
Ph.D. degree in electrical engineering and computer
science.

He has been involved with the development of
the parallel processor for computer vision, as a
high speed arithmetic block and embedded memory
designer. Currently, his research interests include

parallel architectures and sub-systems for computer vision chip.

Seungjin Lee (S’06) received the B.S. and M.S.
degrees in electrical engineering and computer sci-
ence from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2006 and
2008, respectively, where he is currently pursuing the
Ph.D. degree in electrical engineering and computer
science.

His research interests include low power digital
signal processors for digital hearing aids and body
area communication. Currently, he is investigating
parallel architectures for computer vision processing.

Se-Joong Lee (S’99–M’05) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Korea Advanced Institute of Science and Tech-
nology, Daejeon, Korea, in 1999, 2001, and 2005,
respectively.

Since 2005, he has been working for the Com-
munication and Medical Systems Laboratory, Texas
Instruments, Dallas. Currently, he is leading a
hardware platform team for Media Access Control
system for broadband wireless data communication.
His research interests include architecture and chip

implementation of network-on-chips, low-power high-performance digital
circuits, and power management in system-on-chips. His network-on-chip de-
signs were recognized from Korea Integreated Circuits Design Contest in 2002
and 2004, respectively. He contributed a book chapter to Network-on-Chips:
Technology and Tools (Morgan Kaufmann, 2006).

Hoi-Jun Yoo (M’95–SM’04–F’08) received the B.S.
degree in electronic from Seoul National University,
Seoul, Korea, in 1983, and the M.S. and Ph.D. de-
grees in electrical engineering from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Korea, in 1985 and 1988, respectively. His
Ph.D. work concerned the fabrication process for
GaAs vertical optoelectronic integrated circuits.

From 1988 to 1990, he was with Bell Communi-
cations Research, Red Bank, NJ, where he invented
the 2-D phase-locked VCSEL array, the front-sur-

face-emitting laser, and the high-speed lateral HBT. In 1991, he became
Manager of a DRAM Design Group, Hyundai Electronics, and designed a
family of from fast-1 M DRAMs and 256 M synchronous DRAMs. In 1998,
he joined the faculty of the Department of Electrical Engineering, KAIST, and
is currently a full Professor. From 2001 to 2005, he was the director of System
Integration and IP Authoring Research Center (SIPAC), funded by the Korean
government to promote worldwide IP authoring and its SOC application. From
2003 to 2005, he was the full time Advisor to the Minister of Korea Ministry
of Information and Communication and National Project Manager for SoC and
Computer. In 2007, he founded System Design Innovation and Application
Research Center (SDIA), KAIST, to research and develop SoCs for intelligent
robots, wearable computers and bio systems. His current research interests
include high-speed and low-power network-on-chips, 3-D graphics, body area
networks, biomedical devices and circuits, and memory circuits and systems.
He is the author of the books DRAM Design (Hongleung, 1996; in Korean),
High Performance DRAM (Sigma, 1999; in Korean), and chapters of Networks
on Chips (Morgan Kaufmann, 2006).

Dr. Yoo was a recipient of the Electronic Industrial Association of Korea
Award for his contribution to DRAM technology in 1994, the Hynix Develop-
ment Award in 1995, the Korea Semiconductor Industry Association Award in
2002, the Best Research of KAIST Award in 2007, the Design Award of 2001
ASP-DAC, and the Outstanding Design Awards in 2005 and 2006, and the 2007
A-SSCC. He is a member of the executive committee of ISSCC, Symposium on
VLSI, and A-SSCC. He is the TPC chair of the A-SSCC 2008.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 8, 2009 at 20:07 from IEEE Xplore. Restrictions apply.

